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History

Euclid’s Axioms

1 Any two points in a plane may be joined by a straight line.

2 A finite straight line may be extended continuously in a straight
line.

3 A circle may be constructed with any centre and radius.

4 All right angles are equal to one another.

5 If a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on which
the angles are less than the two right angles.
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Circa 100 BC:
5th postulate is equivalent to
Through a point not on a straight line there is one and only one
straight line through the point parallel to the given straight line.
The attempt to prove the 5th postulate from the other
postulates gave rise to hyperbolic geometry.
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History
Gauss started thinking of parallels about 1792. In an 18th
November, 1824 letter to F. A. Taurinus, he wrote:
‘The assumption that the sum of the three angles (of a triangle)
is smaller than two right angles leads to a geometry which is
quite different from our (Euclidean) geometry, but which is in
itself completely consistent.
But Gauss did not publish his work.
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In the 18th century, Johann Heinrich Lambert introduced what
are today called hyperbolic functions and computed the area of
a hyperbolic triangle.
In the nineteenth century, hyperbolic geometry was extensively
explored by the Hungarian mathematician Janos Bolyai and the
Russian mathematician Nikolai Ivanovich Lobachevsky, after
whom it is sometimes named. Lobachevsky published a paper
entitled On the principles of geometry in 1829-30, while Bolyai
discovered hyperbolic geometry and published his independent
account of non-Euclidean geometry in the paper The absolute
science of space in 1832.
The term "hyperbolic geometry" was introduced by Felix Klein
in 1871.
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The Problem

Parallel Postulate
Given a straight line L in a plane P and a point x on the plane P
lying outside the line L, there exists a unique straight line L′

lying on P passing through x and parallel to L.

Problem
Prove the Parallel Postulate from the other axioms of Euclidean
geometry.
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2) a straight line L
3) the notion of parallellism?
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Euclidean Geometry Revisited

Answers for Euclidean Geometry:
The Euclidean plane is R2 equipped with the metric

ds2 = dx2 + dy2.

(Infinitesimal Pythagoras)
Meaning: Lengths of curves σ (= smooth maps of [0,1] into
R2) are computed as per the formula
l(σ) =

∫ 1
0 ds =

∫ 1
0 [(

dx
dt )

2 + (dy
dt )

2]
1
2 dt (A)

for some parametrization x = x(t), y = y(t) of the curve σ.
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Theorem

Given two points (x1, y1), (x2, y2) ∈ R2, the straight line
segment between (x1, y1) and (x2, y2) is the unique path that
realizes the shortest distance (as per formula A) between them.

Definition
Two bi-infinite straight lines are said to be parallel if they do not
intersect.
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Answers for a slightly more general geometry: Metric on
U ⊂ R2:

ds2 = f (x , y)dx2 + g(x , y)dy2.

Here, l(σ) =
∫ 1

0 ds =∫ 1
0 [f (x(t), y(t))(

dx
dt )

2 + g(x(t), y(t))(dy
dt )

2]
1
2 dt ....(B)
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Definitions:
1) Given two points (x1, y1), (x2, y2) ∈ R2, the geodesic
between (x1, y1) and (x2, y2) is the unique path that realizes the
shortest distance (as per formula B) between them.
2) An isometry I is a map that preserves the metric, i.e. if
I((x , y)) = (x1, y1) then

f (x , y)dx2 + g(x , y)dy2 = f (x1, y1)dx2
1 + g(x1, y1)dy2

1 .
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Theorem 1:
Vertical straight lines in H are geodesics. In fact, the vertical
segment between a,b is the unique geodesic between a,b.
Theorem 2:
1) Translations: Define f : H→ H by f (x , y) = (x + a, y) for
some fixed a ∈ R.
2) Inversions about semicircles: Define g : H→ H by g(z) = R2

z
for some R > 0, where z denotes the complex conjugate of z.
Then f ,g are isometries of H.
Observation 3:
Image of a geodesic under an isometry is another geodesic.
Hence images of vertical geodesics under inversions are
geodesics.
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