Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a
classroom situation. We may suggest strategies for dealing with them, or invite responses,
or both. “Classroom” is equally a forum for raising broader issues and sharing personal
experiences and viewpoints on matters related to teaching and learning science.
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The Landau Theory of Phase Transitions:

A Mechanical Analog

The Landau theory of phase transitions occupies
a centerpiece position in physics. We illustrate
the theory by a pedagogical example at the pre-
university level. In the example a bead of mass m
is threaded on a ring which is set rotating about
The dynamics of the bead
mimics key features of the Landau theory.

a vertical diameter.

1. Introduction

2008 was the centenary year of the great Russian physi-
cist L D Landau. Born on Jan 22, 1908, Landau grew up
to be an eminent scientist who made seminal contribu-
tions to all branches of theoretical physics. Landau was
also an outstanding scholar and teacher of physics. His
accomplishments include the co-discovery of the den-
sity matrix method in quantum mechanics, quantum
mechanical theory of diamagnetism, the theory of sec-
ond order phase transitions, the mean-field theory of
superconductivity, the explanation of Landau damping
in plasma physics, the Landau pole in quantum electro-
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dynamics, and the two-component theory of neutrinos.
Many of us are familiar with ‘Landau—Lifshitz’ series of
volumes in Theoretical Physics [1, 2]. Several physics
terms bear his name.

Landau received many honours. In the Soviet Union he
was directly elected as a member of the Academy of Sci-
ence and was given the title of Hero of Socialist Effort.
He was awarded the 1962 Nobel Prize for Physics. Along
with Vitalyn Ginzburg, Landau made a milestone con-
tribution to the theory of second order phase transition
[3]. The application of this theory is far reaching and
ranges from chemical sciences to particle physics. In the
present article we shall try to understand the essence of
this theory by studying a simple mechanical model.

2. The Model

Our model consists of a ring of radius R with a small
bead of mass m threaded on it [4]. The ring is set rotat-
ing about its vertical diameter with angular velocity w as
shown in Figure 1. There is no friction. One begins with
small w which gradually increases. It is observed that
the bead continues to be at the lowest position P; until a
certain critical angular velocity w, is attained. The bead
slides up as w increases beyond w,.. The figure depicts
a typical position of the bead at Py (for w > w.). The
behavior can be understood on the basis of potential-
energy diagram of the bead. For w < w,, the potential-
energy diagram has a single minimum while for w > w,
it develops a double minimum (see Figure 5 on p.709).
This is analogous to the free energy diagram of a mag-
netic system undergoing second order phase transition.
For a temperature T < T., the free energy with respect
to the magnetization M has a single minimum, whereas
for T > T,, it has two minima. Here T, is the critical
temperature and is called the ‘Curie’ temperature. We
shall explore and exploit this analogy gainfully in this
article.

The application of
this theory is far
reaching and
ranges from
chemical sciences
to particle physics.

Figure 1. The bead on a

rotating ring.

RESONANCE | July 2009 W

705


http://www.verypdf.com/

CLASSROOM

Figure 2. Free body dia-
gram of the bead in ‘equi-
librium’ for » > o_.

3. Analogies
3.1 The ‘Phase Transition’

Let us analyze the dynamics of the bead on the rotating
ring in the non-inertial frame. We shall employ polar
co-ordinates {r,0}. We will find that it is useful to ex-

press our answers in terms of w, = \/g/R, where g is
the magnitude of acceleration due to gravity. Note that
in the non-inertial frame the bead will appear station-
ary at Po. We shall designate this steady state position
as ‘equilibrium’ although strictly speaking this is a mis-
nomer.

The free body diagram of the bead in the non-inertial
frame is shown in Figure 2. It is clear from the figure
that the tangential and radial components of the force
(Fy and F)) are respectively:

Fy = Fepcosf — mgsinb; (1)
F. = N —mgcosf — mw?Rsin?6. (2)

Here F.(= mw?Rsinfy) is the centrifugal force and N
is the normal force on the bead. For ‘equilibrium’, the
tangential component (Fjy) vanishes. Hence

cos by = : (3)
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where 6y is the ‘equilibrium’ angle:

2
i w
0o = =+ |cos 1—;"

The + indicates that there are two equivalent positions,
Py and P} (see Figure 1). We shall comment on this
later after describing Figure 5. Note that for w < we,
equation (3) implies cosfy > 1. This is clearly unphys-
ical. A little reflection will convince us that § = 0 for
w < we. It can be also seen from (1) and (2) that, for
=0, Fp =0, N =mg, i.e., the ring is rotating but the
bead is at the bottom (at Py). This indicates a tran-
sition in Figure 1 at w = w.. The analogy with phase
transition is strengthened when we examine the behav-
ior of the normal (N) and centrifugal (F¢) forces with
w.

For w < w
fp =0, N =mg and Fg =0,

whereas for w > w,
w4 1/2
N = mw?R and Fy4 = mw?R [1 — —Z] . (4)
w

The last equation is obtained using (3) and the trigono-
metric identity sin?# = 1—cos? . The behavior of forces
(N and F¢) are plotted in Figure 3 where again we see
the transition at w = we.

mg

[ ®

Figure 3. Dependence of
normal (N) and centrifugal
(F ) forces on . For large
values of o, F_, approaches
N.
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The role of Mis
played by 6 and
temperature is inver-
sely related to w.

Figure 4. The behavior of6
as function of . The inset
shows an analogous be-
havior of magnetization M
as a function of tempera-
ture T.

3.2 The ‘Magnetization’

We next obtain the dependence of the ‘equilibrium’ an-
gle 0 on w as w approaches w,. For w — w6 is close
to zero. Hence on expanding the cosine term in (3), we
get

2 2
0 We
2 w2’

971/2
6’0:4_—\@[—&] . (5)

Also note from (3) that as w — oo, 0p — £7/2. This
behavior is sketched in Figure 4. This plot also has
an analogue in phase transition. The magnetization M
goes to zero as T goes to T, in a similar fashion. This
is shown in the inset of Figure 4, where My is the max-
imum magnetization. Thus the role of M is played by
6 and temperature is inversely related to w. Increas-
ing temperature is equivalent to decreasing w. (Note:
The critical exponent is 1/2 in our case and also in Lan-
dau theory. However, experimentally and in more elab-
orate theories, the exponent of vanishing magnetization
is 1/3).

/2

0o

—m/2 e
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3.3 The ‘Free Energy Diagram’ and ‘Symmetry
Breaking’

It is more instructive to look at the potential energy.
Recall that

14V (9)

"R g

Taking V(0 = 0) = 0, we obtain

V() =mgR [(1 —cosf) — ;}—Sin2 0] . (6)

2
We

On expanding the cosf and sin 6 terms in (6), we get

V(0) ~ a(w)d®+bw)e?,
o) = (1o,

2 w
mgR w?

for small # and upto order (6%). We get two types of
behavior as shown in Figure 5. For § = 0,V (0) = 0; it is
stable for w < w. and unstable for w > w.. For w > w.,

V()

w2

0
a

Figure 5. Potential energy
foro < o, (0 >ow)is
depicted by the dotted
(solid) line.
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The existence of

symmetry breaking
has played a cardinal

role in modern

particle physics and

condensed matter
theory.

0 has two minima at + 6y. We can observe this by look-
ing at the second order derivative:

V” _ Wz w2 2
(0) = mgRcosf |1 — — cosf| +mgR—;sin”6 . (7)
w

C C

For § = 0y = £ cos™! (w?/w?) |

w? wd
V//(Ho) = ng—2 ( — —Z) >0 ifw > We - (8)
w? w
Thus + 6y are stable minima. A very important con-
cept in modern physics is symmetry breaking. This is
captured by the double minima diagram in Figure 5.
For w > w¢, § = +60y and 0 = —0; are equally likely.
However the smallest perturbation, say a whiff of air
or a vertical axis which is slightly offcentre, will make
the bead go towards one of the minima and symmetry
will be broken. The existence of symmetry breaking has
played a cardinal role in modern particle physics and
condensed matter theory.

3.4 ‘Critical Slowing Down’

It is also instructive to determine the frequency of oscil-
lation €2y of the bead about the ‘equilibrium’ position 6.

1 V"8
Qo= — ()
R m

For w < we, g = 0, and we obtain from (7) that

(9)

Q= (w2 — w2, (10)

Similarly for w > w., using (8) we obtain

4 1/2
Oy = w<1—w—z> . (11)

w

The behavior of €2 is sketched in Figure 6. The fact that
as w — w(ﬁ Qg — 0 is called ‘critical slowing down’.
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/\/ Critical Slowing down

()

()

(o

Similarly near the phase transition, the magnetic mo-
ment also becomes sluggish.

3.5 The ‘Susceptibility Divergence’

An important aspect of phase transition in magnetic sys-
tems is the divergence of susceptibility. Interestingly
even this aspect is captured by our simple mechanical
model. We apply a weak tangential force f cos ()t to the
bead in ‘equilibrium’. The equation of motion is, (see
equation (1)),

mRO = mw?R sinf cos — mgsinf + f cos Qt .

For w < w, 8 ~ 0, sinf ~ 60, cosf ~ 1 and hence

f
0 =—Q50 + — cost .
ot + R cos
Recall that Q2 = w? — w? from (10). Let us assume the
steady state solution 6 = 6y cos2t. We then obtain

o(t) 1 1
f omR (25—

cos (2t . (12)

In magnetic systems the role of f cos )t is replaced by
the time varying external magnetic field and that of 6,
as stated earlier, by the magnetization M. Thus 0/f
is the ‘susceptibility’ x of the bead-ring system. The
static susceptibility x(0) for Q — 0, is 6o/ f.

Figure 6. Dependence of
the bead’s oscillation fre-
quency Q on the angular
speed o. For large values
of o, Q, approaches the
asymptote depicted by the
dotted line Q= o.
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Figure 7. ‘Static susceptibility’ y(0) (=6 /f) with o.
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and diverges as w — w. as shown in Figure 7. The
susceptibility in a magnetic system shows the same be-
havior. Another name for M is the order parameter. In
our case the order parameter is 6. Just as the magnetic
field ‘orders’ the magnetization M in magnetic systems,
the rotational angular speed w ‘orders’ 6.

4. Conclusion

Table T encapsulates the analogy between our mechan-
ical system and a magnetic system undergoing phase
transition from ferromagnetic to paramagnetic phase.
This analogy should not be overstretched. Our model
has a single degree of freedom, viz. angular deflection.
The magnetic system is complex and has about 10?3
degrees of freedom. Our mechanical analysis is in the
non-inertial frame; thus what we designate as ‘equilib-
rium’ can be misleading. The mechanical model can be
quite fruitful in understanding a wide variety of nat-
ural phenomenon. We encourage the reader to come up
with other mechanical analogues of the Landau theory
of phase transitions.
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No. Mechanical System Magnetic System Reference
in text

1 Deflection 6 Magnetization M Section 3.2
2 Increasing angular speed w Decreasing temperature T’ Section 3.2
3 Critical angular speed w, Critical (Curie) temperature T, Section 3.1
4 Exponent of 6 is 0.5 Exponent of M is 0.5 Section 3.2

5 60— +w/2 M — £ M, Figue 4 |
Section 3.2

6  Symmetry Breaking Symmetry Breaking Figure 5,
+6y for w > w, +M for T < T, Section 3.3

7 Oscillation frequency Critical slowing down of Figure 6,
Qo —0asw — wci magnetic moments near 7T, Section 3.4

8  0/f diverges as w — wc Susceptibility diverges Figure 7,
as T — T, Section 3.5

We note in passing that the derivation in Section 3.1  1pe 1. Analogy between
has been a popular problem for higher secondary school  mechanical and magnetic
students and has even appeared in the Indian Institute  systems.

of Technology — Joint Entrance Examination physics pa-

per in 1993. However this wonderful analogy is not even

mentioned, thus reducing it to another ‘dry’ problem.

To honour Landau we posed this problem as a chal-

lenging award winning problem in the selection camp

leading to the selection of the Indian team for the In-

ternational Physics Olympiad. The winner, Ish Dhand

of Chandigarh was given the Indian Physics Association

cash award of Rs. 3000/- for the best solution to this

problem.
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